Beamline 17-BM / IMCA-CAT

Scientific focus: Pharmaceutical macromolecular crystallography

Scientific programs: Structures of protein–ligand complexes, *de novo* protein structures, drug design, protein engineering, and crystallographic methods development

Optics & Optical Performance

- Daresbury double-crystal constant off-set monochromator
 - 28 m from source 6–20 keV energy range Si(111) 10^{-4} energy resolution ($\Delta E/E$) at 10 keV 35 mm offset below orbital plane water cooling
- sagittally bent 2nd monochromator crystal
- Daresbury vertically focusing mirror
- 3 x 10^{11} ph/sec flux on 200 μm x 200 μm sample at 12.4 keV

Experiment Stations

17-BM-A

• white beam first optics enclosure

17-BM-B

- white/monochromatic beam station
- · monochromatic macromolecular crystallography

Detectors

- Mar 165 CCD
- fluorescence detector

Beamline Controls and Data Acquisition

- controls: Sun and Linux systems running EPICS with VME "MX" software (locally developed), running on UNIX
- data acquisition: proprietary software from Mar

Beamline Support Equipment/Facilities

- 4° chill room in wet lab
- user-accessible computers for data processing
- Oxford Instruments cryojet for sample cooling

Bending Magnet Source Characteristics (nominal)

source	APS bending magnet
critical energy	19.51 keV
on-axis peak brilliance at 16.3 keV	2.9×10^{15} ph/sec/mrad $\%$ mm $\%$ 0.1 $\%$ bw
on-axis peak angular flux at 16.3 keV	9.6 x 10 ¹³ ph/sec/mrad%0.1%bw
on-axis peak horizontal angular flux at 5.6 keV	1.6 x 10 ¹³ ph/sec/mradh/0.1%bw
source size at critical energy $\sum_{x} \sum_{y} x$	$145~\mu{ m m}$ $36~\mu{ m m}$
source divergence at critical energy $\sum_{x'} x'$	$6~\mathrm{mrad}$ $47~\mu\mathrm{rad}$